# On the S-boxes Generated via Cellular Automata Rules

#### Stjepan Picek<sup>1</sup>, Luca Mariot<sup>2</sup>, Domagoj Jakobovic<sup>3</sup>, Alberto Leporati<sup>2</sup>

<sup>1</sup> CSAIL, MIT, USA and Cyber Security Research Group, TU Delft, The Netherlands

<sup>2</sup> DISCo, Università degli Studi Milano - Bicocca, Italy

<sup>3</sup> University of Zagreb, Croatia

July 4, 2017

#### Cellular Automata

**Experimental Results** 

Conclusions

Stjepan Picek

#### Definition

One-dimensional cellular automaton: triple  $\langle n, d, f \rangle$  where  $n \in \mathbb{N}$  is the number of cells arranged on a one-dimensional array,  $d \in \mathbb{N}$  is the neighborhood size and  $f : \mathbb{F}_2^d \to \mathbb{F}_2$  is the local rule

Each cell synchronously updates its state s ∈ F<sub>2</sub> by applying f to itself and the d − 1 cells to its right

Example: 
$$d = 3$$
,  $f(s_i, s_{i+1}, s_{i+2}) = s_i \oplus s_{i+1} \oplus s_{i+2}$ 

#### CA Global Rule and Boundary Conditions

- ► Global rule of (n, d, f): vectorial Boolean function induced by f
- ▶ No Boundary Conditions:  $F : \mathbb{F}_2^n \to \mathbb{F}_2^{n-d+1}$  is defined as

$$F(x_0, \cdots, x_{n-1}) = (f(x_0, \cdots, x_{d-1}), f(x_1, \cdots, x_d), \cdots, f(x_{n-d}, \cdots, x_{n-1}))$$

▶ Periodic Boundary Conditions:  $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$  is defined as

$$F(x_0, \dots, x_{n-1}) = (f(x_0, \dots, x_{d-1}), f(x_1, \dots, x_d), \dots, f(x_{n-1}, \dots, x_{d-2}))$$

Example: 
$$n = 6$$
,  $d = 3$ ,  $f(s_i, s_{i+1}, s_{i+2}) = s_i \oplus s_{i+1} \oplus s_{i+2}$ 



### CA Local Rule Representations

Wolfram code of f: Decimal encoding of the truth table of f

| X    | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |                 | Code |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----------------|------|
| f(x) | 0   | 1   | 0   | 0   | 1   | 0   | 1   | 1   | $  \Rightarrow$ | 210  |

Example: d = 3,  $f(x) = x_0 \oplus x_1 x_2 \oplus x_2$  (Keccak  $\chi$  function, rule 210)

- ▶ De Bruijn graph of *f*: directed graph G(V, E) with  $V = \mathbb{F}_2^{d-1}$  and  $(v_1, v_2) \in E \Leftrightarrow$  $v_1$  and  $v_2$  overlap on d-2coordinates
- f is represented as a labeling over E



## Walsh Spectrum of Permutive NBCA (1/4)

•  $f: \mathbb{F}_2^d \to \mathbb{F}_2$  is called left permutive if there is  $g: \mathbb{F}_2^{d-1} \to \mathbb{F}_2$  s.t.

$$f(x_0, x_1, \cdots, x_{n-1}) = x_0 \oplus g(x_1, \cdots, x_{n-1})$$

• Example: Keccak  $\chi$  rule,  $\chi(x_0, x_1, x_2) = x_0 \oplus x_1 x_2 \oplus x_3$ 

#### Theorem

Let  $F : \mathbb{F}_2^n \to \mathbb{F}_2^{n-d+1}$  be the global rule of a NBCA with left permutive local rule  $f : \mathbb{F}_2^d \to \mathbb{F}_2$ , and let  $W_{v \cdot F}(\omega)$  be a Walsh coefficient of  $v \cdot F$ . Then, the coefficient  $W_{v' \cdot F'}(\omega')$  of  $v' \cdot F'$ obtained by appending a cell to the left of F is one of the following:

• 
$$W_{v' \cdot F'}(\omega') = 0$$

• 
$$W_{v' \cdot F'}(\omega') = 2 \cdot W_{v \cdot F}(\omega)$$

### Walsh Spectrum of Permutive NBCA (2/4)

Proof (Idea): by induction on the number of output cells

- Base: n = d + 1 (2 output cells). Only three components must be checked, namely (1,0), (0,1) and (1,1):
  - For (1,0) and (0,1), it suffices to split the sum of the Walsh coefficient with respect to the value of x<sub>0</sub>:

$$W_{(0,1)\cdot F}(\omega) = \sum_{x \in \mathbb{F}_2^{n+1}: x_0 = 0} (-1)^{f(x_1, \dots, x_n)\omega_1 x_1 \oplus \dots \oplus \omega_n x_n} + (-1)^{\omega_0} \sum_{x \in \mathbb{F}_2^{n+1}: x_0 = 1} (-1)^{f(x_1, \dots, x_n)\omega_1 x_1 \oplus \dots \oplus \omega_n x_n}$$

- for  $\omega_0 = 0 \Rightarrow W_{(0,1)} \cdot F(\omega) = 2 \cdot W_f(\omega_1, \cdots, \omega_n)$
- for  $\omega_0 = 1 \Rightarrow W_{(0,1)\cdot F}(\omega) = 0$

### Walsh Spectrum of Permutive NBCA (3/4)

Proof (Idea): by induction on the number of output cells

- Base: n = d + 1 (2 output cells). Only three components must be checked, namely (1,0), (0,1) and (1,1):
  - For (1,1): use left permutivity ⇒ f(0,x<sub>1</sub>,...x<sub>n</sub>) ≠ f(1,x<sub>1</sub>,...,x<sub>n</sub>) and again split with respect to x<sub>0</sub>:

$$W_{(1,1)\cdot F}(\omega) = \sum_{x \in \mathbb{F}_2^{n+1} : x_0 = 0} (-1)^{f(0,x_1,\cdots,x_{n-1})\oplus f(x_1,\cdots,x_n)\omega_1 x_1 \oplus \cdots \oplus \omega_n x_n} \\ + (-1)^{\omega_0} \sum_{x \in \mathbb{F}_2^{n+1} : x_0 = 1} (-1)^{f(1,x_1,\cdots,x_{n-1})\oplus f(x_1,\cdots,x_n)\omega_1 x_1 \oplus \cdots \oplus \omega_n x_n}$$

• for 
$$\omega_0 = 0 \Rightarrow W_{(0,1)\cdot F}(\omega) = 0$$
,

• for  $\omega_0 = 1 \Rightarrow W_{(0,1)} \cdot F(\omega) = 2 \cdot W_f(\omega_1, \cdots, \omega_n)$ 

## Walsh Spectrum of Permutive NBCA (4/4)

Proof (Idea): by induction on the number of output cells

- Induction: F': 𝒫<sup>n+1</sup><sub>2</sub> → 𝒫<sup>n-d+2</sup><sub>2</sub> obtained by appending a cell to the left of F: 𝒫<sup>n</sup><sub>2</sub> → 𝒫<sup>n-d+1</sup><sub>2</sub>
- The number of component functions doubles: for  $v \in \mathbb{F}_2^n \{\underline{0}\}$ ,
  - Case (0, v): Similar to the base case (0, 1)

$$\omega_0 = 0 \Rightarrow W_{(0,v) \cdot F'}(\omega) = 2 \cdot W_{v \cdot F}(\omega_1, \cdots, \omega_{n+1})$$

• 
$$\omega_0 = 1 \Rightarrow W_{(0,v) \cdot F'}(\omega) = 0$$

Case (1, v): Use again left permutivity, as in base case (1, 1)

• 
$$\omega_0 = 0 \Rightarrow W_{(1,v)\cdot F'}(\omega) = 0$$
  
•  $\omega_0 = 1 \Rightarrow W_{(1,v)\cdot F'}(\omega) = 2 \cdot W_{v\cdot F}(\omega_1, \cdots, \omega_{n+1})$ 

#### Corollary

Let  $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ , with m = n - d + 1 be the global rule of a CA with left permutive local rule  $f : \mathbb{F}_2^d \to \mathbb{F}_2$ . Then,

$$NL(F) = 2^{m-1} \cdot NL(f)$$

• Example: Keccak  $\chi$  rule:  $NL(\chi) = 2$ 

 By experimental observations, the same formula seems to hold also for permutive PBCA Cellular Automata

**Experimental Results** 

Conclusions

Stjepan Picek

- What do those results mean from the practical (cryptographic) perspective?
- How to use CA rules to construct optimal (with respect to the nonlinearity and differential uniformity property) S-boxes?
- ► For smaller sizes (i.e., up to 5×5) it is easy to conduct exhaustive search

#### Table: Results for exhaustive search

| n | Number of (CA) S-<br>boxes | Number of bijec-<br>tive S-boxes | Number of optimal<br>S-boxes |
|---|----------------------------|----------------------------------|------------------------------|
|   | 56,66                      |                                  | 0.000                        |
| 3 | 256                        | 36                               | 12                           |
| 4 | 65 536                     | 1 536                            | 512                          |
| 5 | 4 294 967 296              | 22500002                         | 2880                         |

- ► For 4×4 size, there are 512 optimal S-boxes
- However, all of them belong to only 4 optimal classes G<sub>3</sub>, G<sub>4</sub>, G<sub>5</sub>, G<sub>6</sub>
- In each class, there are 128 S-boxes

- If exhaustive search is not possible, we can use heuristics
- Genetic programming (GP) seems to be a rather natural choice for this task
- Genetic programming is an evolutionary algorithm in which the data structures that undergo optimization are computer programs

# Construction of S-boxes using CA Rules

- Since the aim of GP is to automatically generate new programs, each individual represents a computer program, where the most common are symbolic expressions representing parse trees
- A tree can represent a mathematical expression, a rule set or a decision tree
- The building elements in a tree-based GP are functions (inner nodes) and terminals (leaves, problem variables)
- Additional benefits are that we can limit the size of a tree (consequently, the size of a rule) and influence the maximal latency of the underlying S-box

#### Algorithm 1 Pseudocode for GP.

Input: Parameters of the algorithm Output: Optimal solution set  $t \leftarrow 0$   $P(0) \leftarrow CreateInitialPopulation$ while TerminationCriterion do  $t \leftarrow t + 1$   $P'(t) \leftarrow SelectMechanism(P(t-1))$   $P(t) \leftarrow VariationOperators(P'(t))$ end while Return OptimalSolutionSet(P)

- Construct a CA rule in symbolic form
- Genetic programming (GP) optimizes symbolic representation of Boolean functions
- Potential solutions represented as a graph:
  - terminal nodes (leaves) represent current state bits (s<sub>i</sub>)
  - functional nodes are Boolean functions (AND, OR, NOT, ...)
- Indirectly search the space of S-boxes
- With GP, we are able to find optimal S-boxes for dimension 7×7 and S-boxes with differential uniformity equal to 4 for 6×6 size

- Secondary goal: find a CA rule applicable for construction of S-boxes of varying sizes
- Assume base search dimension is given (n)
- Procedure:
  - generate candidate CA rule for size n
  - apply rule to generate S-boxes of sizes n, n+2, n+4, ...
  - assign quality measure based on properties for all considered sizes

Cellular Automata

**Experimental Results** 

Conclusions

Stjepan Picek

- CA rules represent interesting option to build S-boxes
- We can use either CA rules that result in bijective S-boxes for a number of sizes but then cryptographic properties degrade or a CA rules resulting in optimal S-boxes for only one size
- We can conduct exhaustive search for up to 5×5 size with CA rules, which is not possible for general 5×5 S-boxes
- For larger sizes we can easily use heuristics

Thanks for your attention!

Q?

Stjepan Picek