
On the S-boxes Generated via Cellular
Automata Rules

Stjepan Picek1, Luca Mariot2, Domagoj Jakobovic3, Alberto
Leporati2

1 CSAIL, MIT, USA and Cyber Security Research Group, TU Delft, The Netherlands
2 DISCo, Università degli Studi Milano - Bicocca, Italy

3 University of Zagreb, Croatia

July 4, 2017

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Outline

Cellular Automata

Experimental Results

Conclusions

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Cellular Automata (CA)

Definition
One-dimensional cellular automaton: triple 〈n,d, f〉 where n ∈ N is
the number of cells arranged on a one-dimensional array, d ∈ N is
the neighborhood size and f : Fd

2 → F2 is the local rule

I Each cell synchronously updates its state s ∈ F2 by applying f
to itself and the d −1 cells to its right

Example: d = 3, f(si ,si+1,si+2) = si ⊕si+1⊕si+2

0

f(1,1,0) = 1⊕1⊕0

110· · · 0 0 · · ·

· · · 1 0 0 1 1 0 · · ·

⇓ Parallel update

01· · · 0 0 0 1 0 1 · · ·

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



CA Global Rule and Boundary Conditions

I Global rule of 〈n,d, f〉: vectorial Boolean function induced by f
I No Boundary Conditions: F : Fn

2→ F
n−d+1
2 is defined as

F(x0, · · · ,xn−1)= (f(x0, · · · ,xd−1), f(x1, · · · ,xd), · · · , f(xn−d , · · · ,xn−1))

I Periodic Boundary Conditions: F : Fn
2→ F

n
2 is defined as

F(x0, · · · ,xn−1)= (f(x0, · · · ,xd−1), f(x1, · · · ,xd), · · · , f(xn−1, · · · ,xd−2))

Example: n = 6, d = 3, f(si ,si+1,si+2) = si ⊕si+1 ⊕si+2

1 0 0 1

f(1,0,0) = 1

01 0 0 0 1

No Boundary CA – NBCA

01 0 1 0 0

f(1,1,0) = 0

01 0 0 0 1 1 0

Periodic Boundary CA – PBCA

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



CA Local Rule Representations

I Wolfram code of f : Decimal encoding of the truth table of f

x 000 001 010 011 100 101 110 111 Code
f(x) 0 1 0 0 1 0 1 1 ⇒ 210

Example: d = 3, f(x) = x0 ⊕x1x2 ⊕x2 (Keccak χ function, rule 210)

I De Bruijn graph of f :
directed graph G(V ,E) with
V = Fd−1

2 and (v1,v2) ∈ E⇔
v1 and v2 overlap on d −2
coordinates

I f is represented as a
labeling over E

00

0110

11

f(0,0,1) = 1

f(0,1,1) = 0f(1,1,0) = 1

f(1,0,0) = 1

f(1,0,1) = 0

f(0,1,0) = 0

f(0,0,0) = 0

f(1,1,1) = 1

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Walsh Spectrum of Permutive NBCA (1/4)

I f : Fd
2 → F2 is called left permutive if there is g : Fd−1

2 → F2 s.t.

f(x0,x1, · · · ,xn−1) = x0⊕g(x1, · · · ,xn−1)

I Example: Keccak χ rule, χ(x0,x1,x2) = x0⊕x1x2⊕x3

Theorem

Let F : Fn
2→ F

n−d+1
2 be the global rule of a NBCA with left

permutive local rule f : Fd
2 → F2, and let Wv ·F(ω) be a Walsh

coefficient of v ·F. Then, the coefficient Wv′·F ′(ω
′) of v′ ·F ′

obtained by appending a cell to the left of F is one of the following:
I Wv′·F ′(ω

′) = 0
I Wv′·F ′(ω

′) = 2 ·Wv ·F(ω)

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Walsh Spectrum of Permutive NBCA (2/4)

Proof (Idea): by induction on the number of output cells

I Base: n = d +1 (2 output cells). Only three components must
be checked, namely (1,0), (0,1) and (1,1):

I For (1,0) and (0,1), it suffices to split the sum of the Walsh
coefficient with respect to the value of x0:

W(0,1)·F(ω) =
∑

x∈Fn+1
2 :x0=0

(−1)f(x1,··· ,xn)ω1x1⊕···⊕ωnxn

+(−1)ω0
∑

x∈Fn+1
2 :x0=1

(−1)f(x1,··· ,xn)ω1x1⊕···⊕ωnxn

I for ω0 = 0⇒W(0,1)·F(ω) = 2 ·Wf (ω1, · · · ,ωn)

I for ω0 = 1⇒W(0,1)·F(ω) = 0

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Walsh Spectrum of Permutive NBCA (3/4)

Proof (Idea): by induction on the number of output cells

I Base: n = d +1 (2 output cells). Only three components must
be checked, namely (1,0), (0,1) and (1,1):

I For (1,1): use left permutivity⇒ f(0,x1, · · ·xn) , f(1,x1, · · · ,xn)
and again split with respect to x0:

W(1,1)·F(ω) =
∑

x∈Fn+1
2 :x0=0

(−1)f(0,x1,··· ,xn−1)⊕f(x1,··· ,xn)ω1x1⊕···⊕ωnxn

+(−1)ω0
∑

x∈Fn+1
2 :x0=1

(−1)f(1,x1,··· ,xn−1)⊕f(x1,··· ,xn)ω1x1⊕···⊕ωnxn

I for ω0 = 0⇒W(0,1)·F(ω) = 0,
I for ω0 = 1⇒W(0,1)·F(ω) = 2 ·Wf (ω1, · · · ,ωn)

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Walsh Spectrum of Permutive NBCA (4/4)

Proof (Idea): by induction on the number of output cells

I Induction: F ′ : Fn+1
2 → Fn−d+2

2 obtained by appending a cell to
the left of F : Fn

2→ F
n−d+1
2

I The number of component functions doubles: for v ∈ Fn
2 {0},

I Case (0,v): Similar to the base case (0,1)
I ω0 = 0⇒W(0,v)·F ′(ω) = 2 ·Wv ·F (ω1, · · · ,ωn+1)
I ω0 = 1⇒W(0,v)·F ′(ω) = 0

I Case (1,v): Use again left permutivity, as in base case (1,1)
I ω0 = 0⇒W(1,v)·F ′(ω) = 0
I ω0 = 1⇒W(1,v)·F ′(ω) = 2 ·Wv ·F (ω1, · · · ,ωn+1)

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Nonlinearity of Permutive NBCA

Corollary
Let F : Fn

2→ F
m
2 , with m = n−d +1 be the global rule of a CA with

left permutive local rule f : Fd
2 → F2. Then,

NL(F) = 2m−1 ·NL(f)

I Example: Keccak χ rule: NL(χ) = 2

n 4 5 6 7
NL(F) 4 8 16 32

I By experimental observations, the same formula seems to
hold also for permutive PBCA

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Outline

Cellular Automata

Experimental Results

Conclusions

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Construction of S-boxes using CA Rules

I What do those results mean from the practical (cryptographic)
perspective?

I How to use CA rules to construct optimal (with respect to the
nonlinearity and differential uniformity property) S-boxes?

I For smaller sizes (i.e., up to 5×5) it is easy to conduct
exhaustive search

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Construction of S-boxes using CA Rules

Table: Results for exhaustive search

n Number of (CA) S-
boxes

Number of bijec-
tive S-boxes

Number of optimal
S-boxes

3 256 36 12
4 65 536 1 536 512
5 4 294 967 296 22 500 002 2 880

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Construction of S-boxes using CA Rules

I For 4×4 size, there are 512 optimal S-boxes
I However, all of them belong to only 4 optimal classes - G3,

G4, G5, G6

I In each class, there are 128 S-boxes

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Construction of S-boxes using CA Rules

I If exhaustive search is not possible, we can use heuristics
I Genetic programming (GP) seems to be a rather natural

choice for this task
I Genetic programming is an evolutionary algorithm in which

the data structures that undergo optimization are computer
programs

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Construction of S-boxes using CA Rules

I Since the aim of GP is to automatically generate new
programs, each individual represents a computer program,
where the most common are symbolic expressions
representing parse trees

I A tree can represent a mathematical expression, a rule set or
a decision tree

I The building elements in a tree-based GP are functions (inner
nodes) and terminals (leaves, problem variables)

I Additional benefits are that we can limit the size of a tree
(consequently, the size of a rule) and influence the maximal
latency of the underlying S-box

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Construction of S-boxes using CA Rules

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



CA Local Rule Optimization with Genetic Programming

I Construct a CA rule in symbolic form
I Genetic programming (GP) optimizes symbolic representation

of Boolean functions
I Potential solutions represented as a graph:

I terminal nodes (leaves) represent current state bits (si)
I functional nodes are Boolean functions (AND, OR, NOT, ...)

I Indirectly search the space of S-boxes
I With GP, we are able to find optimal S-boxes for dimension

7×7 and S-boxes with differential uniformity equal to 4 for
6×6 size

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Search for Reusable CA Rules

I Secondary goal: find a CA rule applicable for construction of
S-boxes of varying sizes

I Assume base search dimension is given (n)
I Procedure:

I generate candidate CA rule for size n
I apply rule to generate S-boxes of sizes n, n+2, n+4, ...
I assign quality measure based on properties for all considered

sizes

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Outline

Cellular Automata

Experimental Results

Conclusions

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Conclusions

I CA rules represent interesting option to build S-boxes
I We can use either CA rules that result in bijective S-boxes for

a number of sizes but then cryptographic properties degrade
or a CA rules resulting in optimal S-boxes for only one size

I We can conduct exhaustive search for up to 5×5 size with CA
rules, which is not possible for general 5×5 S-boxes

I For larger sizes we can easily use heuristics

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules



Questions?

Thanks for your attention!

Q?

Stjepan Picek On the S-boxes Generated via Cellular Automata Rules


	Cellular Automata
	Experimental Results
	Conclusions

